Quantum rotation and translation of hydrogen molecules encapsulated inside C₆₀: temperature dependence of inelastic neutron scattering spectra.
نویسندگان
چکیده
The quantum dynamics of a hydrogen molecule encapsulated inside the cage of a C60 fullerene molecule is investigated using inelastic neutron scattering (INS). The emphasis is on the temperature dependence of the INS spectra which were recorded using time-of-flight spectrometers. The hydrogen endofullerene system is highly quantum mechanical, exhibiting both translational and rotational quantization. The profound influence of the Pauli exclusion principle is revealed through nuclear spin isomerism. INS is shown to be exceptionally able to drive transitions between ortho-hydrogen and para-hydrogen which are spin-forbidden to photon spectroscopies. Spectra in the temperature range 1.6≤T≤280 K are presented, and examples are given which demonstrate how the temperature dependence of the INS peak amplitudes can provide an effective tool for assigning the transitions. It is also shown in a preliminary investigation how the temperature dependence may conceivably be used to probe crystal field effects and inter-fullerene interactions.
منابع مشابه
Inelastic neutron scattering spectrum of H2@C60 and its temperature dependence decoded using rigorous quantum calculations and a new selection rule.
In the supramolecular complex H2@C60, the lightest of molecules, H2, is encapsulated inside the most highly symmetric molecule C60. The elegance and apparent simplicity of H2@C60 conceal highly intricate quantum dynamics of the coupled translational and rotational motions of the guest molecule in a nearly spherical nanoscale cavity, which embodies some of the most fundamental concepts of quantu...
متن کاملQuantum translator-rotator: inelastic neutron scattering of dihydrogen molecules trapped inside anisotropic fullerene cages.
We report an inelastic neutron scattering investigation of the quantum dynamics of hydrogen molecules trapped inside anisotropic fullerene cages. Transitions among the manifold of quantized rotational and translational states are directly observed. The spectra recorded as a function of energy and momentum transfer are interpreted in terms of the rotational potential and the cage dimensions. The...
متن کاملHD in C₆₀: theoretical prediction of the inelastic neutron scattering spectrum and its temperature dependence.
We report rigorous quantum calculations of the inelastic neutron scattering (INS) spectra of HD@C₆₀, over a range of temperatures from 0 to 240 K and for two incident neutron wavelengths used in recent experimental investigations. The computations were performed using our newly developed methodology, which incorporates the coupled five-dimensional translation-rotation (T-R) eigenstates of the g...
متن کاملA numerical renormalization group approach for calculating the spectrum of a vibronic system occurring in molecules or impurities in insulators
Theoretically, in order to describe the behavior of a spectrum, a mathematical model whichcould predict the spectrum characteristics is needed. Since in this study a Two-state system has beenused like models which was introduced previously past and could couple with the environment, theformer ideas have been extended in this study. we use the second quantized version for writing thisHamiltonian...
متن کاملQuantum rotation of hydrogen in single-wall carbon nanotubes
We report inelastic neutron scattering results on hydrogen adsorbed onto samples containing single-wall carbon nanotubes. These materials have attracted considerable interest recently due to reports of high density hydrogen storage at room temperature. Inelastic neutron scattering clearly shows the ortho±para conversion of physisorbed hydrogen in a nanotube containing soot loaded with hydrogen....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Philosophical transactions. Series A, Mathematical, physical, and engineering sciences
دوره 371 1998 شماره
صفحات -
تاریخ انتشار 2013